Votre compte

Le Machine learning avec R - Modélisation mathématique rigoureuse - collection O'Reilly


L'apprentissage automatique, un champ d'étude essentiel aux développements de l'Intelligence artificielle
L'apprentissage automatique est un sujet intimidant jusqu'à ce que vous en connaissiez les principes fondamentaux. Si vous comprenez les principes essentiels du codage, ce livre d'introduction vous aidera à acquérir une base solide dans le domaine de l'apprentissage automatique. En utilisant le langage de programmation R, vous commencerez par apprendre à modéliser avec la régression, puis vous passerez à des sujets plus avancés tels que les réseaux de neurones et les méthodes arborescentes.
Finalement, vous plongerez dans le monde de l'apprentissage automatique. en utilisant le package caret associé au langage de programmation R. Une fois que vous aurez développé une réelle familiarité avec des sujets tels que la différence entre les modèles de régression et de classification, vous serez en mesure de résoudre de multiples problèmes d'apprentissage automatique.
L'auteur, Scott V. Burger, fournit également plusieurs exemples pour vous aider à bâtir une connaissance pratique de l'apprentissage automatique.

Explorez le domaine de l'apprentissage automatique, de ses modèles, de ses algorithmes et de l'entraînement des données
Comprenez les algorithmes d'apprentissage automatique supervisés et non supervisés
Examinez les notions statistiques utiles pour la conception de données à utiliser dans les modèles
Plongez dans les modèles de régression linéaire utilisés dans les affaires et la science
Utilisez des réseaux de neurones monocouches et multicouches pour calculer les sorties
Regardez comment fonctionnent les modèles arborescents, y compris les arbres de décision courants
Obtenez une vue complète de l'écosystème de l'apprentissage automatique en R
Explorez la puissance des outils disponibles dans le package caret de R

Collection O'Reilly

Ce livre est classé dans les catégories :

24,99 €
?

Version papier

35,00 €

Ebook protégé par filigrane

L’éditeur de ce livre a choisi de protéger ce fichier par filigrane (ou watermarking). Ce filigrane permet de relier le fichier à son propriétaire via l’apposition d’un filigrane visible ou invisible sur le fichier.

Vérifier la compatibilité de vos supports

Vous aimerez aussi

Fiche détaillée de “Le Machine learning avec R - Modélisation mathématique rigoureuse - collection O'Reilly”

Fiche technique

  • Auteur : Scott V. BURGER
  • Éditeur : First Interactive
  • Date de parution : 04/10/18
  • EAN : 9782412043387
  • Format : ePub
  • Nombre de pages: 168
  • Protection : Digital Watermarking

Résumé

L'apprentissage automatique, un champ d'étude essentiel aux développements de l'Intelligence artificielle
L'apprentissage automatique est un sujet intimidant jusqu'à ce que vous en connaissiez les principes fondamentaux. Si vous comprenez les principes essentiels du codage, ce livre d'introduction vous aidera à acquérir une base solide dans le domaine de l'apprentissage automatique. En utilisant le langage de programmation R, vous commencerez par apprendre à modéliser avec la régression, puis vous passerez à des sujets plus avancés tels que les réseaux de neurones et les méthodes arborescentes.
Finalement, vous plongerez dans le monde de l'apprentissage automatique. en utilisant le package caret associé au langage de programmation R. Une fois que vous aurez développé une réelle familiarité avec des sujets tels que la différence entre les modèles de régression et de classification, vous serez en mesure de résoudre de multiples problèmes d'apprentissage automatique.
L'auteur, Scott V. Burger, fournit également plusieurs exemples pour vous aider à bâtir une connaissance pratique de l'apprentissage automatique.

Explorez le domaine de l'apprentissage automatique, de ses modèles, de ses algorithmes et de l'entraînement des données
Comprenez les algorithmes d'apprentissage automatique supervisés et non supervisés
Examinez les notions statistiques utiles pour la conception de données à utiliser dans les modèles
Plongez dans les modèles de régression linéaire utilisés dans les affaires et la science
Utilisez des réseaux de neurones monocouches et multicouches pour calculer les sorties
Regardez comment fonctionnent les modèles arborescents, y compris les arbres de décision courants
Obtenez une vue complète de l'écosystème de l'apprentissage automatique en R
Explorez la puissance des outils disponibles dans le package caret de R

Collection O'Reilly

Biographie de Scott V. BURGER

Avis des internautes


Aucun commentaire n'a été posté sur ce livre.

Ajouter votre commentaire