Stéphane Gauthier

  • These proceedings comprise of invited and contributed papers presented at the 13th International Conference on X-Ray Lasers (ICXRL 2012) which was held 11-15 June 2012 in Paris, France, in the famous Quartier Latin, inside the historical Center of Cordeliers. This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation.
    New results in the generation of intense coherent x-rays and progress towards practical devices and their applications are reported in these proceedings, including areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation.
    Recent achievements related to the increase of the repetition rate up to 100 Hz and shorter wavelength collisional plasma-based soft x-ray lasers down to about 7 nm are presented. Seeding the amplifying plasma with a femtosecond high-order harmonic of infrared laser was foreseen as the required breakthrough to break the picosecond frontier. Numerical simulations based on the Maxwell-Bloch model are presented in these proceedings, transposing the chirped pulse amplification technique to the x-ray domain in order to increase the time over which the femtosecond seed can be amplified.
    These proceedings also include innovative applications of soft x-ray lasers based on techniques and diagnostics relevant to topical domains such as EUV lithography, inertial confinement fusion, or warm dense matter physics.

  • Discover the latest models and methods for robotic microassembly from around the worldThis book presents and analyzes new and emerging models and methods developed around the world for robotic microassembly, a new and innovative way to produce better microsystems. By exploring everything from the physics of micromanipulation to microassembly to microhandling, it provides the first complete overview and review of this rapidly growing field. Robotic Microassembly is divided into three parts:Part One: Modeling of the MicroworldPart Two: Handling StrategiesPart Three: Robotic and MicroassemblyTogether, these three parts feature eight chapters contributed by eight different authors. The authors, internationally recognized experts in the field of robotic microassembly, represent research laboratories in Asia, Europe, and North America. As a result, readers get a remarkable perspective on different approaches to robotic microassembly from around the world. Examples provided throughout the chapters help readers better understand how these different approaches work in practice. References at the end of each chapter lead to the primary literature for further investigation of individual topics.Robotic microassembly offers a new, improved way to manufacture high-performance microelectro-mechanical systems (MEMS). Therefore, any professional or student involved in microrobotics, micromechatronics, self-assembly or MEMS will find plenty of novel ideas and methods in this book that set the stage for new approaches to design and build the next generation of MEMS and microproducts.